Role of p44/p42 MAP kinase in the age-dependent increase in vascular smooth muscle cell proliferation and neointimal formation.
نویسندگان
چکیده
OBJECTIVE Age-dependent increase in vascular smooth muscle cell (VSMC) proliferation is thought to contribute to the pathology of atherosclerotic diseases. In this study, we investigated the role of mitogen-activated protein kinases (MAPKs) on VSMC proliferation and neointimal formation in the context of aging. METHODS AND RESULTS VSMCs were isolated from the aorta of young and old rabbits. The proliferative index after serum stimulation was significantly increased in old versus young VSMCs. This was associated with a significant and specific age-dependent increase in p44/p42 MAPK activation. Treatment with MEK inhibitor PD98059 successfully inhibited p44/p42 MAPK activities and VSMC proliferation. These results were confirmed in vivo using a model of balloon injury in rabbit iliac arteries. p44/p42 MAPK activities were rapidly induced by angioplasty in young and old animals. However, the levels of p44/p42 MAPK activities achieved in arteries of old rabbits were significantly higher than those of young rabbits. This was associated with a higher cellular proliferative index and a significant increase in neointimal formation in old animals. Local delivery of PD98059 in old rabbits successfully inhibited p44/p42 MAPK activities after angioplasty, which led to a significant reduction in cellular proliferation and neointimal formation in treated animals. CONCLUSIONS Our study suggests for the first time that increased p44/p42 MAPK activation contributes to augmented VSMC proliferation and neointimal formation with aging. p44/p42 MAPK inhibition could represent a novel therapeutic avenue against atherosclerotic diseases.
منابع مشابه
Inhibition of vascular smooth muscle cell proliferation and neointimal formation in injured arteries by a novel, oral mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor.
BACKGROUND Mitogen-activated protein kinases (MAPKs) are rapidly induced after arterial injury in different animal models. However, their precise role in vascular smooth muscle cell (VSMC) proliferation and neointimal formation in vivo remains to be determined. METHODS AND RESULTS We investigated the properties of a novel, selective inhibitor of the upstream kinase, MAPK/extracellular signal-...
متن کاملCaveolin-1 deficiency stimulates neointima formation during vascular injury.
Neointima formation is a process characterized by smooth muscle cell (SMC) proliferation and extracellular matrix deposition in the vascular intimal layer. Here, we critically evaluate the role of caveolin-1 (Cav-1) in the pathogenesis of neointima formation. Cav-1 and caveolae organelles are particularly abundant in SMCs, where they are thought to function in membrane trafficking and signal tr...
متن کاملPlatelet-derived growth factor-BB (PDGF-BB) regulation of migration and focal adhesion kinase phosphorylation in rabbit aortic vascular smooth muscle cells: roles of phosphatidylinositol 3-kinase and mitogen-activated protein kinases.
OBJECTIVE Phosphatidylinositol 3'-kinase (PI3-kinase) is implicated in cell migration and focal adhesion kinase (FAK) phosphorylation. In contrast, it has been proposed that mitogen-activated protein (MAP) kinases are essential for proliferation but may be dissociated from chemotactic signalling. We investigated the roles of PI3-kinase and p42/p44 MAP kinases in cell migration and FAK tyrosine ...
متن کاملOxLDL induces mitogen-activated protein kinase activation mediated via PI3-kinase/Akt in vascular smooth muscle cells.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK acti...
متن کاملRole of p42/p44 mitogen-activated-protein kinase and p21waf1/cip1 in the regulation of vascular smooth muscle cell proliferation by nitric oxide.
The purpose of this study was to determine the involvement of the p42/p44 mitogen-activated protein kinase (MAPK) pathway and induction of p21(waf1/cip1) in the antiproliferative effects of nitric oxide (NO) on rat aortic smooth muscle cells (RASMC). NO, like alpha-difluoromethylornithine (DFMO), interferes with cell proliferation by inhibiting ornithine decarboxylase (ODC) and, therefore, poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2003